

Typical Small DC

- Large Server Rooms (or "Comms" Room)
- Diversity of equipment: Contain servers, storages, routers, switches, IP services (telephony, CCTV,...)
- Serves the internal operation of the company that owns it
- Normally located within the Company offices (Hq or Head Office)
- Serve the building IT infrastructure too
- Less than 200 kW

Small DCs How they are typically done

Small DCs How they are typically done

- Raised floor, UPS, Security, Fire protection ...
- Quick Fixes
- Mismatching UPS configuration such as hot stand-by with different sizing, bypass from different sources
- CRAC units (sometimes) oversizing (most of the times)
- > Over cooling, room cooling instead of equipment cooling, ...

Small DCs How they are typically done

- > Air leaks
- Cables under the raised floor obstructing the airflow
- Not ready to host high density
- Falsely "Concurrently Maintainable"
 - (Dual delivery paths are not separate,
 - Fuel supply to gensets forming a weak link)

Small DCs

How they are typically done

Market Trends of Small Data Centers

Will corporations migrate their services to the Cloud instead?

Is it worth rethinking?

What Can be done to improve (while keeping the costs down)?

Some good thoughts can:

Increase reliability
Decrease downtime
Improve operation
Consume less energy
Ensure expandability and flexibility
Ready to handle higher density

Typical Case study

A Data Center Within the new Credit Libanais Headquarters building

30 Racks
100 sqm White Space
120 kW Power

Computational Fluid Dynamics

Hot Aisle Containment

II

Cold Aisle Containm

cold aisle containment

Cooling System: Chilled Water or Direct Expansion?

high temperature chilled water

High Temperature Chilled Water

Comparison of Chiller Efficiencies

6 deg c water temp

Evaporator	
Leaving fluid temperature	6.0°C
Delta T	8.0°C
Ambient summer	39.8°C
Model reference	EWAQ260DAYN
Application	STD
Option Code	N
Cooling	
Capacity	229.1kW
Power input	103.5kW
EER	2.2
ESEER	3.73
Evaporator	
Fluid flow rate	6.8I/s
Fluid pressure drop	18958Pa

power input: 103 Hw

10 deg c water temp

Evaporator	
Leaving fluid temperature	10.0°C
Delta T	8.0°C
Ambient summer	39.8°C
Model reference	EWAQ210DAYN
Application	STD
Option Code	N
Cooling	
Capacity	212.3kW
Power input	84.5kW
EER	2.5
ESEER	4
Evaporator	
Fluid flow rate	6.3l/s
Fluid pressure drop	28899Pa

High Temperature Chilled Water

Comparison of Chiller Efficiencies

power input: 103 Hw

power input: 84 Hw

High Temperature Chilled Water

High chilled water temperature

No resultant dehumidification

Outdoor Air Humid air

Use for humidification when needed

Why Do you need a humidifier in a hot and warm Weather?

High Differential Temperature Chilled Water

Resulting in:

- > Smaller Pumps
- > Smaller pipe diameters
- > Smaller valves
- Smaller pumping energy

The Case of Variable Flow

Primary-Secondary System

The Case of Variable Flow

Variable Primary Flow System

Metering: Essential to Monitor and Analyze

- Measure Everything, From Source up to the PDU
- All inputs All outputs
- Include Facilities (lighting, etc.) and NOC

LIMIT OF BMS CONTRACTOR SCOPE OF WORK

The Case of Continuous Cooling

The Case of Continuous Cooling

info@dic-me.com 2028 the galleria hyatt, al khaleej road, deira, dubai +971 4 2730873 | www.dic-me.com

Thank You

